Mid exam Program Correctness, 8 march 2013

Problem 1 (15 pt). Given are the program variables $a, b: \mathbb{Z}$. Design an annotated program fragment S that consists of exactly two assignments that satisfies

$$
S \begin{aligned}
& \{a \cdot b=X \wedge a+2 \cdot b=Y\} \\
& \\
& \{a=X \wedge b=Y\}
\end{aligned}
$$

Problem 2 (25 pt). Given is the program variable $n: \mathbb{Z}$. Design an annotated command S that satisfies

$$
S \begin{aligned}
& \{n=4 \cdot X+7 \vee n=6 \cdot X+4\} \\
& \\
& \{n=X\}
\end{aligned}
$$

Problem 3 (50 pt). The function $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the recurrence:

$$
\begin{aligned}
& n=0 \Rightarrow f(n)=0 \\
& n>0 \Rightarrow f(n)=f(n-1)+2 \cdot n-1
\end{aligned}
$$

(a) (10 pt) Proof: $\left(\forall n \in \mathbb{N}: f(n)=n^{2}\right)$
(b) (40 pt) Design an annotated command T that satisfies

$$
\begin{aligned}
& \text { const } x: \mathbb{N} ; \\
& \operatorname{var} s, z: \mathbb{N} ; \\
& \quad\left\{P: x=X^{2} \wedge X \geq 0\right\} \\
& T \quad\{Q: z=X\}
\end{aligned}
$$

Use a while loop with an invariant that contains at least the conjunct $s=f(z)$. You are only allowed to use addition, and multiplication by 2 .

